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From the Classical case...

▶ Automata are simple, yet interesting, Computation Models

▶ NFA/DFA characterize the languages decidable in
Constant Space

...to the Quantum one

▶ (Dis)Advantages of Quantum Computation are still not
precisely identified

▶ Studying the Expressive Power of Quantum Automata
could provide important insights on the topic
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Our Aim



▶ We consider the simplest class of Measure-Once QFAs

▶ We analyse their expressive power under “small” changes:

We switch from Schrödinger’s to Heisenberg’s view of
Quantum Mechanics

We enrich Measure-Once QFAs with both Bounded and
Unbounded Memory on the prefixes

▶ We prove that Heisenberg QFAs have the same expressive
power of standard Measure-Once QFAs

▶ We observe that QFAs with Unbounded Memory are not
necessarily more expressive than Bounded Memory ones
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Results



▶ Quantum Computation and Measure-Once QFAs

▶ Heisenberg Quantum Automata:

Closure w.r.t. Mirror Languages

Expressive Equivalence Theorem

▶ Bounded Memory Quantum Automata:

Pumping Lemma

Hierarchy Property

▶ Simplest Unbounded Memory Quantum Automata:

Negative result on the Expressive Power
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Plan of the Talk



▶ Quantum Computation is based on Hilbert spaces

▶ Finite dimension Hilbert spaces are vector spaces over C

▶ Column vectors are |v⟩ and Row vectors are ⟨v|
▶ States are unitary vectors |v⟩

▶ Unitary transformations U rule the evolutions:

linear transformations

preserve length and angles
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Quantum States and Evolution



Example 1

|v⟩ = i√
2
|0⟩+ 1√

2
|1⟩ = i√

2

(
1
0

)
+ 1√

2

(
0
1

)
U =

(
0 −i
i 0

)
|v′⟩ = U|v⟩ = −i√

2
|0⟩+ −1√

2
|1⟩

2 × 2 Unitary matrices are rotations on the Bloch Sphere.
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Example of Evolution



▶ Measurements/Observables allow to extract information
from quantum states

▶ The extracted information is always classic (i.e., bits)

▶ Measurement operations are done through Hermitian
operators

▶ Before measuring, we can only compute the probabilities
of the outcomes
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Quantum Measurements/Observables



Example 2

|v⟩ = i√
2
|0⟩+ 1√

2
|1⟩ U =

(
0 −i
i 0

)
|v′⟩ = U|v⟩ = −i√

2
|0⟩+ −1√

2
|1⟩

Example 3

P = |0⟩⟨0| = (1 0)
(

1
0

)
=

(
1 0
0 0

)
Probability of the outcome 0 after measuring |v′⟩

||P|v′⟩||2 =
∣∣∣ −i√

2

∣∣∣2 = 1
2
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Example of Evolution and Measurement



Definition 4 (Measure-Once QFA [2])
A MO-QFA is a 5-tuple M = (Q,Σ,U , |ψ⟩,F) where:
▶ Q is the finite canonical basis of Cd for some d ∈ N
▶ Σ is a finite alphabet

▶ U = {Uσ}σ∈Σ is a finite set of unitaries of dimension
Cd × Cd

▶ |ψ⟩ ∈ Cd is the initial superposition of M

▶ F ⊆ Q is the set of final states. We define PF =
∑
|q⟩∈F |q⟩⟨q|
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Measure-Once QFAs



Example 5
M = (Q,Σ,U , |ψ⟩,F) where

Q = {|0⟩, |1⟩} Σ = {a, b}

U = {Ua = R(θ),Ub = R(−θ)} |ψ⟩ = |0⟩

F = {|1⟩}
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Example of a MO-QFA



▶ The unitary applied to the initial state for input
x = x1 . . . xn−1xn ∈ Σ∗ is:

Ux = UxnUxn−1 · · ·Ux1

▶ The probability of a MO-QFA S to accept a string x is:

pS(x) = ∥PFUx|ψ⟩∥2 = ⟨ψ|U†xP†FPFUx|ψ⟩
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Computation in QFAs



Definition 6 (Cut-point QFA)
A language L ⊆ Σ∗ is accepted by a QFA S with cut-point λ if
and only if L = {x ∈ Σ∗ | pS(x) > λ}

A language L ⊆ Σ∗ is said to be accepted by a QFA with
cut-point if and only if there exist a QFA S and λ ≥ 0 such that
L ⊆ Σ∗ is accepted by S with cut-point λ
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Acceptance Conditions



Example 7
M = (Q,Σ,U , |ψ⟩,F) where

Q = {|0⟩, |1⟩} Σ = {a, b}

U = {R(θ),R(−θ)} |ψ⟩ = |0⟩

F = {|1⟩}

M accepts the language

L = {x ∈ Σ∗ : |x|a ̸= |x|b}

with cut-point 0
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Example of an accepted Language



L = {x ∈ {a, b} | x has an even number of as}

Classical case

|0⟩start |1⟩

a
b

a

b

Quantum case
Q = ({|0⟩, |1⟩}, {a, b}, {Ua,Ub}, |0⟩, {|0⟩}) where

|0⟩ =
(

1
0

)
|1⟩ =

(
0
1

)
Ua =

(
0 1
1 0

)
Ub =

(
1 0
0 1

)
PF =

(
1 0
0 0

)
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A Visual Description



Quantum Mechanics can be described through two pictures:

▶ Schrödinger picture, in which the state evolves and
observables are fixed

▶ Heisenberg picture, where the state is fixed and
observables change
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Perspective Switch: Heisenberg



▶ An Heisenberg Quantum Finite Automaton (HQFA) is
defined as MO-QFA

▶ The semantics is different

▶ PF is the current observable, σ the input symbol:

P′F = U†σPFUσ

▶ The probability of a HQFAH to accept a string x ∈ Σ∗ is:

ρH(x) = ∥U†←−x PFU←−x |ψ⟩∥2 = ⟨ψ|U†←−x P†FPFU←−x |ψ⟩
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Heisenberg Quantum Finite Automata



Example 8
M = (Q,Σ,U , |ψ⟩,F) where

Q = {|0⟩, |1⟩} Σ = {a, b}

U = {Ua = X,Ub = H} |ψ⟩ = 1√
2
(|0⟩+ |1⟩)

F = {|0⟩}
If M is a MO-QFA:

pM(ab) = ∥|0⟩⟨0|UbUa|+⟩∥2 = ∥|0⟩⟨0|Ub|+⟩∥2 = ∥|0⟩⟨0||0⟩∥2 = 1

If M is a HQFA:

ρM(ab) = ∥U†bU†a |0⟩⟨0|UaUb|+⟩∥2 = ∥U†b|1⟩⟨1|Ub|+⟩∥2 = 0

ρM(ba) = ∥U†aU†b|0⟩⟨0|UbUa|+⟩∥2 = ∥U†a |+⟩⟨+|Ua|+⟩∥2 = 1
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Example: MO-QFA vs HQFA



HQFAs and MO-QFAs are related through mirror operation
←−
L

Theorem 9 (Mirror language)

L is accepted by a MO-QFA with cut-point λ if and only if
←−
L is

accepted by an HQFA with cut-point λ

MO-QFAs are closed under the mirror operation

Theorem 10 (Mirror Closure of MO-QFAs)

L is accepted by a MO-QFA with cut-point if and only if
←−
L is

accepted by a MO-QFA with cut-point.
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Expressive Power



Corollary 11 (Equivalence between MO-QFAs and
HQFAs)
L is accepted by a MO-QFA with cut-point if and only if L is accepted
by an HQFA with cut-point
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Equivalence Result



▶ The results so far do not increase the expressive power of
MO-QFAs

▶ We investigated a model were the notion of memory is
introduced

▶ We considered h-MQFA (equivalent to [1])

▶ Unitaries now depend on suffix prefixes of length at most h

20 / 27

Bounded Memory QFAs
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Computation in Bounded Memory QFAs



Theorem 12 (Pumping Lemma for h-MQFAs)

Let L ⊆ Σ∗ be the language accepted by an h-MQFA
∀uv ∈ L with |v| ≥ h there exists k ∈ N+ such that uvvk ∈ L
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Pumping Lemma for h-MQFAs
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Hierarchy Property



▶ Even with finite memory, some regular languages could
not be accepted.

▶ Therefore we tried to give an Unbounded Memory
▶ We called the resulting automaton model UMQFA
▶ The definition is the same as h-MQFAs, but the semantic is

different
▶ Unitaries now depend on the prefixes of the input
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Unbounded Memory
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Computation in UMQFAs



By studying the sequence {V
k(k+1)

2 }k>1, where V is a square
complex matrix, we obtained the following result about
UMQFA expressiveness

Theorem 13

Let Σ = {a} and L = {ϵ, a}
There is a 2-MQFA that accepts L with cut-point and there is no
UMQFA accepting L with cut-point
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UMQFAs Limitations



▶ We played with some variants of Measure-Once QFAs

▶ We fought against the limitations imposed by Unitaries

▶ We proved some Closure and Equivalence results on
Measure-Once QFAs

▶ We characterized Measure-Once QFAs with Bounded
Memory on the prefixes

▶ The Unbounded Memory case needs further investigations
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Conclusions
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