University of Udine

Heisenberg in Quantum Automata

Carla Piazza ${ }^{1}$ Riccardo Romanello ${ }^{1}$
${ }^{1}$ Dipartimento di Scienze Matematiche, Informatiche e Fisiche

July 16, 2022

Our Aim

From the Classical case...

- Automata are simple, yet interesting, Computation Models
- NFA/DFA characterize the languages decidable in Constant Space
...to the Quantum one
- (Dis)Advantages of Quantum Computation are still not precisely identified
- Studying the Expressive Power of Quantum Automata could provide important insights on the topic

Results

- We consider the simplest class of Measure-Once QFAs
- We analyse their expressive power under "small" changes:
- We switch from Schrödinger's to Heisenberg's view of Quantum Mechanics
- We enrich Measure-Once QFAs with both Bounded and Unbounded Memory on the prefixes
- We prove that Heisenberg QFAs have the same expressive power of standard Measure-Once QFAs
- We observe that QFAs with Unbounded Memory are not necessarily more expressive than Bounded Memory ones

Plan of the Talk

- Quantum Computation and Measure-Once QFAs
- Heisenberg Quantum Automata:
- Closure w.r.t. Mirror Languages
- Expressive Equivalence Theorem
- Bounded Memory Quantum Automata:
- Pumping Lemma
- Hierarchy Property
- Simplest Unbounded Memory Quantum Automata:
- Negative result on the Expressive Power

Quantum States and Evolution

- Quantum Computation is based on Hilbert spaces
- Finite dimension Hilbert spaces are vector spaces over \mathbb{C}
- Column vectors are $|v\rangle$ and Row vectors are $\langle v|$
- States are unitary vectors $|v\rangle$
- Unitary transformations U rule the evolutions:
- linear transformations
- preserve length and angles

Example of Evolution

Example 1

$$
\begin{array}{r}
|v\rangle=\frac{i}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle=\frac{i}{\sqrt{2}}\binom{1}{0}+\frac{1}{\sqrt{2}}\binom{0}{1} \\
\left|v^{\prime}\right\rangle=U|v\rangle=\frac{-i}{\sqrt{2}}|0\rangle+\frac{-1}{\sqrt{2}}|1\rangle
\end{array}
$$

2×2 Unitary matrices are rotations on the Bloch Sphere.

Quantum Measurements/Observables

- Measurements/Observables allow to extract information from quantum states
- The extracted information is always classic (i.e., bits)
- Measurement operations are done through Hermitian operators
- Before measuring, we can only compute the probabilities of the outcomes

Example of Evolution and Measurement

Example 2

$$
\begin{gathered}
|v\rangle=\frac{i}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \quad U=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
\left|v^{\prime}\right\rangle=U|v\rangle=\frac{-i}{\sqrt{2}}|0\rangle+\frac{-1}{\sqrt{2}}|1\rangle
\end{gathered}
$$

Example 3

$$
P=|0\rangle\langle 0|=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{1}{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Probability of the outcome 0 after measuring $\left|v^{\prime}\right\rangle$

$$
\| P\left|v^{\prime}\right\rangle \|^{2}=\left|\frac{-i}{\sqrt{2}}\right|^{2}=\frac{1}{2}
$$

Measure-Once QFAs

Definition 4 (Measure-Once QFA [2])

A MO-QFA is a 5-tuple $M=(Q, \Sigma, \mathcal{U},|\psi\rangle, F)$ where:

- Q is the finite canonical basis of \mathbb{C}^{d} for some $d \in \mathbb{N}$
- Σ is a finite alphabet
- $\mathcal{U}=\left\{U_{\sigma}\right\}_{\sigma \in \Sigma}$ is a finite set of unitaries of dimension $\mathbb{C}^{d} \times \mathbb{C}^{d}$
- $|\psi\rangle \in \mathbb{C}^{d}$ is the initial superposition of M
- $F \subseteq Q$ is the set of final states. We define $P_{F}=\sum_{|q\rangle \in F}|q\rangle\langle q|$

Example of a MO-QFA

Example 5

$M=(Q, \Sigma, \mathcal{U},|\psi\rangle, F)$ where
$Q=\{|0\rangle,|1\rangle\} \quad \Sigma=\{a, b\}$
$\mathcal{U}=\left\{U_{a}=R(\theta), U_{b}=R(-\theta)\right\} \quad|\psi\rangle=|0\rangle$
$F=\{|1\rangle\}$

Computation in QFAs

- The unitary applied to the initial state for input $\mathbf{x}=x_{1} \ldots x_{n-1} x_{n} \in \Sigma^{*}$ is:

$$
U_{\mathbf{x}}=U_{x_{n}} U_{x_{n-1}} \cdots U_{x_{1}}
$$

- The probability of a MO-QFA S to accept a string x is:

$$
p_{S}(\mathbf{x})=\| P_{F} U_{\mathbf{x}}|\psi\rangle \|^{2}=\langle\psi| U_{\mathbf{x}}^{\dagger} P_{F}^{\dagger} P_{F} U_{\mathbf{x}}|\psi\rangle
$$

Acceptance Conditions

Definition 6 (Cut-point QFA)

A language $L \subseteq \Sigma^{*}$ is accepted by a QFA S with cut-point λ if and only if $L=\left\{\mathbf{x} \in \Sigma^{*} \mid p_{S}(\mathbf{x})>\lambda\right\}$

A language $L \subseteq \Sigma^{*}$ is said to be accepted by a QFA with cut-point if and only if there exist a QFA S and $\lambda \geq 0$ such that $L \subseteq \Sigma^{*}$ is accepted by S with cut-point λ

Example of an accepted Language

Example 7

$$
\begin{aligned}
& M=(Q, \Sigma, \mathcal{U},|\psi\rangle, F) \text { where } \\
& Q=\{|0\rangle,|1\rangle\} \quad \Sigma=\{a, b\} \\
& \mathcal{U}=\{R(\theta), R(-\theta)\} \quad|\psi\rangle=|0\rangle \\
& F=\{|1\rangle\}
\end{aligned}
$$

M accepts the language

$$
L=\left\{x \in \Sigma^{*}:|x|_{a} \neq|x|_{b}\right\}
$$

with cut-point 0

A Visual Description

$L=\{x \in\{a, b\} \mid x$ has an even number of $a s\}$
Classical case

Quantum case
$Q=\left(\{|0\rangle,|1\rangle\},\{a, b\},\left\{U_{a}, U_{b}\right\},|0\rangle,\{|0\rangle\}\right)$ where
$|0\rangle=\binom{1}{0}|1\rangle=\binom{0}{1} \quad U_{a}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \quad U_{b}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) P_{F}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$

Perspective Switch: Heisenberg

Quantum Mechanics can be described through two pictures:

- Schrödinger picture, in which the state evolves and observables are fixed
- Heisenberg picture, where the state is fixed and observables change

Heisenberg Quantum Finite Automata

- An Heisenberg Quantum Finite Automaton (HQFA) is defined as MO-QFA
- The semantics is different
- P_{F} is the current observable, σ the input symbol:

$$
P_{F}^{\prime}=U_{\sigma}^{\dagger} P_{F} U_{\sigma}
$$

- The probability of a HQFA \mathcal{H} to accept a string $x \in \Sigma^{*}$ is:

$$
\rho_{H}(\mathbf{x})=\| U_{\overleftarrow{x}}^{\dagger} P_{F} U_{\overleftarrow{x}}|\psi\rangle \|^{2}=\langle\psi| U_{\overleftarrow{x}}^{\dagger} P_{F}^{\dagger} P_{F} U_{\overleftarrow{x}}|\psi\rangle
$$

Example: MO-QFA vs HQFA

Example 8

$$
M=(Q, \Sigma, \mathcal{U},|\psi\rangle, F) \text { where }
$$

$Q=\{|0\rangle,|1\rangle\} \quad \Sigma=\{a, b\}$
$\mathcal{U}=\left\{U_{a}=X, U_{b}=H\right\} \quad|\psi\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
$F=\{|0\rangle\}$
If M is a MO-QFA:

$$
p_{M}(a b)=\||0\rangle\langle 0| U_{b} U_{a}|+\rangle\left\|^{2}=\right\||0\rangle\langle 0| U_{b}|+\rangle\left\|^{2}=\right\||0\rangle\langle 0 \| \mid 0\rangle \|^{2}=1
$$

If M is a HQFA:

$$
\begin{aligned}
& \rho_{M}(a b)=\| U_{b}^{\dagger} U_{a}^{\dagger}|0\rangle\langle 0| U_{a} U_{b}|+\rangle\left\|^{2}=\right\| U_{b}^{\dagger}|1\rangle\langle 1| U_{b}|+\rangle \|^{2}=0 \\
& \rho_{M}(b a)=\| U_{a}^{\dagger} U_{b}^{\dagger}|0\rangle\langle 0| U_{b} U_{a}|+\rangle\left\|^{2}=\right\| U_{a}^{\dagger}|+\rangle\langle+| U_{a}|+\rangle \|^{2}=1
\end{aligned}
$$

Expressive Power

HQFAs and MO-QFAs are related through mirror operation \overleftarrow{L}

Theorem 9 (Mirror language)

L is accepted by a MO-QFA with cut-point λ if and only if \overleftarrow{L} is accepted by an HQFA with cut-point λ

MO-QFAs are closed under the mirror operation

Theorem 10 (Mirror Closure of MO-QFAs)

L is accepted by a MO-QFA with cut-point if and only if L is accepted by a MO-QFA with cut-point.

Equivalence Result

Corollary 11 (Equivalence between MO-QFAs and HQFAs)

L is accepted by a MO-QFA with cut-point if and only if L is accepted by an HQFA with cut-point

Bounded Memory QFAs

- The results so far do not increase the expressive power of MO-QFAs
- We investigated a model were the notion of memory is introduced
- We considered h-MQFA (equivalent to [1])
- Unitaries now depend on suffix prefixes of length at most h

Computation in Bounded Memory QFAs

State Before $x_{j}:|\psi\rangle$
State after $x_{j}: \quad|\psi\rangle=W_{x_{j}}^{y}|\psi\rangle$

Pumping Lemma for -MQFAs

Theorem 12 (Pumping Lemma for -MQFAs)

Let $L \subseteq \Sigma^{*}$ be the language accepted by an h-MQFA $\forall u v \in L$ with $|\mathbf{v}| \geq h$ there exists $k \in \mathbb{N}^{+}$such that $\mathrm{uvv}^{k} \in L$

$$
\begin{aligned}
& \text { PRODUCT OF }{ }^{\sigma+/ k} \text { Font: } \\
& \qquad W_{v_{1}}^{\alpha} W_{v_{2}}^{\beta} \ldots W_{v_{1}}^{\alpha} W_{v_{2}}^{\beta} \ldots \\
& \\
& \left(W_{v_{1}}^{\alpha} W_{v_{2}}^{\beta} \cdots\right)^{k}
\end{aligned}
$$

Hierarchy Property

Unbounded Memory

- Even with finite memory, some regular languages could not be accepted.
- Therefore we tried to give an Unbounded Memory
- We called the resulting automaton model UMQFA
- The definition is the same as h-MQFAs, but the semantic is different
- Unitaries now depend on the prefixes of the input

Computation in UMQFAs

State Before $x_{j}:|\psi\rangle$
State after $x_{j}: \quad\left|\psi^{\prime}\right\rangle=\bigcup_{x_{j}}^{y}|\psi\rangle$

STATE AFTER $x_{j+1}: \quad\left|\psi^{\prime \prime}\right\rangle=\bigcup_{x_{j+1}}^{v}\left|\psi^{\prime}\right\rangle$

UMQFAs Limitations

By studying the sequence $\left\{V^{k(k+1)} 2\right\}_{k>1}$, where V is a square complex matrix, we obtained the following result about UMQFA expressiveness

Theorem 13

Let $\Sigma=\{a\}$ and $L=\{\epsilon, a\}$
There is a 2-MQFA that accepts L with cut-point and there is no UMQFA accepting L with cut-point

Conclusions

- We played with some variants of Measure-Once QFAs
- We fought against the limitations imposed by Unitaries
- We proved some Closure and Equivalence results on Measure-Once QFAs
- We characterized Measure-Once QFAs with Bounded Memory on the prefixes
- The Unbounded Memory case needs further investigations
[1] Aleksandrs Belovs, Ansis Rosmanis, and Juris Smotrovs. Multi-letter reversible and quantum finite automata. In International Conference on Developments in Language Theory, pages 60-71. Springer, 2007.
[2] Cristopher Moore and James P Crutchfield. Quantum automata and quantum grammars. Theoretical Computer Science, 237(1-2):275-306, 2000.

