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▶ Quantum Algorithms are usually described through
unitary matrices

▶ Unitary matrices describe the quantum gates we have to
apply to physical qubits

▶ Only a finite set B of quantum gates can be manufactured

▶ Synthesis is the problem of expressing a generic unitary
matrix in terms of B
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Our Aim - Act I



▶ When dealing with real world quantum computers, there
are constraints to take into account

▶ One of them is the Qubit Topology, which restrict the set of
available operations

▶ The specific problem we tackle is minimizing the number
of CNOT gates, dealing with topological constraints.
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Our Aim - Act II



▶ We propose an ASP encodings to solve the CNOT
minimization problem

▶ When solving the problem, we also take into account
topological constraints

▶ We test the model with some random generated matrices

▶ We compare the results with an ASP model that does not
take into account topology [1]
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Results



▶ Unitary matrices and Quantum Gates

▶ Clifford+T

▶ {CNOT, T} circuits

▶ Problem statement

▶ ASP model
▶ Results
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Plan of the Talk



▶ Quantum Computing only allows reversible operations

▶ Quantum states are described through vectors inside C2n

for some n

▶ Such states can be manipulated only using unitary
matrices

▶ Let U ∈ C2n×2n
. Then U is unitary if and only if UU† = I
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Introduction to Unitary Matrices



▶ In the quantum circuit formalism, qubits are manipulated
through quantum gates

▶ Unitary matrices have a 1 to 1 correspondence to quantum
gates

T

X
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Unitaries and Gates



▶ Only a finite set of gates can be manufactured in real world
quantum computers

▶ The rest of the unitaries must be synthesised in terms of
such gates

▶ A set of gates B is called universal if it can synthesise any
unitary U
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Universal Set of Gates



▶ The most adopted universal set of gates is Clifford+T

▶ It contains three single-qubit gates and a two-qubit gate

H =
1√
2

(
1 1
1 −1

)
S =

(
1 0
0 i

)
T =

(
1 0
0 eiπ4

)

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


▶ CNOT(a, b) = (a, a ⊕ b) where a is called control and b is the

target.
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Clifford+T



▶ Consider a circuit composed only by CNOT and T gates —
a {CNOT, T} circuit

▶ It describes some particular function g that acts on the
input qubits

▶ The problem is to find a circuit with the same action g on
the input, with the minimum number of CNOT gates.
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CNOT minimization problem



Lemma 1
The action of a {CNOT, T} circuit on the initial state |x1, x2, · · · xn⟩
has the form:

|x1, x2, · · · xn⟩ 7→ eiπ4 p(x1,x2,··· ,xn) |g(x1, x2, · · · xn)⟩

with p(x1, x2, · · · , xn) defined as:

p(x1, x2, · · · , xn) =

k∑
i=1

(ci mod 8)fi(x1, x2, · · · xn)

where g : Bn → Bn is a linear reversible function and p is a linear
combination of linear boolean functions fi : Bn → B.

11 / 29

Phase Polynomial Representation



▶ Each circuit has its phase polynomial representation,
uniquely defined by g, fi, ci for i = 1, 2, . . . k.

▶ g can be written as a n × n boolean matrix G

▶ Each fi can be expressed as a boolean row vector Fi
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Phase Polynomial Representation



Example 2

x1 x1

x2 T x1 ⊕ x2

x3 T† x1 ⊕ x2 ⊕ x3

Its phase polynomial representation is the following:

G =

1 0 0
1 1 0
1 1 1

 F1 =
(
1 1 0

)
F2 =

(
1 1 1

)
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Example



▶ In real world Quantum Computers, qubits are connected
to each other according to some topology S

▶ CNOT gates can be applied only to pairs of qubits that are
connected in S

▶ How do we encode the topology?
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Topological Constraints



▶ We encode S as a graph (VS,ES)

▶ VS = 1, 2, · · · ,n is the set of nodes, where n is the number
of qubit

▶ ES is a set of directed edges

▶ The set ES introduces the following constraint on the set of
legal operations:

CNOT(i, j) can be applied if and only if (i, j) ∈ ES

15 / 29

It’s Graph Time



1 2 3

▶ This examples depict a topology of a three qubit quantum
device S = {VS = {1, 2, 3},ES = {(1, 2), (2, 3)}}

▶ Only CNOT(1, 2) and CNOT(2, 3) are allowed

▶ Notice that notions like reachability becomes important
when introducing this constraint

▶ If node i cannot reach node j in S, then CNOT(i, j) is not
implementable
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Example of a Three Qubit Topology



Since the number of T gates in the input circuit is supposed to
be optimal, the problem we want to solve is the following:
▶ INPUT: G,S,F1,F2, · · · Fk

▶ OUTPUT: a sequence of CNOT gates to be applied such
that the final behaviour of the circuit is the one described
by G.

The constraints we must fulfill are the following:
▶ We want to apply the minimum number of CNOT gates
▶ Every CNOT gates must be legal according to S
▶ For each Fi with i ∈ {1, 2, · · · , k}, there must exist a

moment during the computation in which a row of G is
exactly Fi.
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Problem Statement



Example 3

Let S,G,F1 be defined as follows:

2

13
G =

1 0 0
1 1 1
0 0 1

 F1 = (1 1 0)

x1 x1

x2 x1 ⊕ x2 ⊕ x3

x3 x3

F1
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An Example



We solved the problem through Answer Set Programming. The
model we propose is a DAG based one:
▶ We want to produce a DAG G = (V,E)

▶ V = {x1, x2, · · · , xn} where xi will have to match the i-th
row of G

▶ We will see in the next slides how the set E is built

▶ We want to build the set E of minimum size l

▶ Each edge in E must comply with the rules introduced by S
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It is Solving Time



▶ A CNOT with control xj and target xi is represented by a
node xi with two incoming edges:

1 One edge comes from the closer node labelled xi

2 The other from the closer node labelled xj

xi

xixj

Figure 1: Generic DAG node describing CNOT(xj, xi).
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Solving with a DAG



▶ The type of node induces a layering of the nodes

▶ Leafs are at layer 0

▶ A node at layer j can only have incoming edges from
nodes in lower layers

▶ One layer can contain more than one node

▶ Let j be the current layer, it can contain at most one node
labelled xi

▶ Each internal node is a CNOT gate
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Why is it a DAG



▶ After l layers, it must hold that
VALl(xi) = Gi, ∀i ∈ {1, 2, · · · ,n}

Where

VAL0(xi) = xi ∀i ∈ {1, 2, · · · ,n}
VALt(xi) = VALt−1(xi) if ∄xk | (xk, xi, t) ∈ E
VALt(xi) = VALt−1(xi)⊕ VALt−1(xk) if ∃xk | (xk, xi, t) ∈ E

▶ Moreover, it must be true that:

∀Fi ∃t ≤ l ∃xj | VALt(xj) = Fi
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Constraints



Example 4
Consider the matrix from Example 3. The generated DAG G,
with the minimum number of node is the following:

x1 x2 x3

x2

x2
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DAG example



Let G ∈ {0, 1}n×n and Fi ∈ {0, 1}n for i = 1, 2, · · · k.
▶ We used two predicates G(i, j, b) and F(i, j, b) to encode G

and F respectively

▶ We ecndoded the graph S with a predicate S(i, j)

▶ NODE(i) holds for every i = 1, 2, · · · ,n

▶ LAYER(i) holds for i = 1, 2, · · · , l

▶ XOR_NODE(I, J,L) holds iff at layer L, there is a node
labelled xI which is the result of the XOR between xI and xJ
— CNOT(xj, xi)

▶ XOR_NODE(I, J,L) can hold iff (j, i) ∈ ES

▶ VALUE(Z, I,Y) holds if and only if xY ∈ VALI(xZ)
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Encoding in CLINGO



For each n ∈ {4, 5, 6, 7, 8}:
▶ we generated 10 different random tests
▶ For each test:

1 we created an n × n boolean matrix—G

2 we picked a number k between 1 and n—the number of Fi

3 we generated k different n boolean vectors—the set of Fi
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Testing Generation



In the tests,we used the following S:

0 1

2 3

4

5

6

7

8

Figure 2: Guadalupe Quantum Computer topology reduced to
8-qubit.
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What about S in the tests



For each test case G, S, {Fi}:
1 we initialized a counter l to 1

2 we run the model with input G, S, {Fi}, l to see if the
instance was solvable with l layers

3 if true, we moved to the next example

4 if false, we increased l and got back to step 2

27 / 29

Testing Algorithm



n avg time (seconds)
4 0.023
5 0.702
6 20.212
7 45.548
8 98.721

(a) Results without the topology.

n avg time (seconds)
4 0.020
5 0.85
6 60.357
7 200.948
8 > 500

(b) Results with the topology.

Figure 3: Test results for the model with and without topology.
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Results



Conclusions:
▶ We proposed an ASP models to minimize the number of

CNOT gates in a {CNOT, T} circuit

▶ In doing so, we took into account also the underlying qubit
topology

▶ We run a batch of tests to see the method efficiency.
Future Works:
▶ We want to optimize the model to make it faster

▶ We want to investigate also constraint programming
approaches

▶ We think that synthesis problem can be tackled as the sum
of small optimization subproblems
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Conclusions and Future Works
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