University of Udine
Synthesis of CNOT
minimal quantum
circuits with topological constraints through ASP

Carla Piazza ${ }^{1}$ Riccardo Romanello ${ }^{1}$
${ }^{1}$ University of Udine, Italy
December 10, 2023

Our Aim - Act I

- Quantum Algorithms are usually described through unitary matrices
- Unitary matrices describe the quantum gates we have to apply to physical qubits
- Only a finite set \mathcal{B} of quantum gates can be manufactured
- Synthesis is the problem of expressing a generic unitary matrix in terms of \mathcal{B}

Our Aim - Act II

- When dealing with real world quantum computers, there are constraints to take into account
- One of them is the Qubit Topology, which restrict the set of available operations
\quad The specific problem we tackle is minimizing the number of CNOT gates, dealing with topological constraints.
- We propose an ASP encodings to solve the CNOT minimization problem
- When solving the problem, we also take into account topological constraints
- We test the model with some random generated matrices
- We compare the results with an ASP model that does not take into account topology [1]

Plan of the Talk

- Unitary matrices and Quantum Gates
- Clifford+T
- $\{$ CNOT, T$\}$ circuits
- Problem statement
- ASP model
- Results

Introduction to Unitary Matrices

- Quantum Computing only allows reversible operations
- Quantum states are described through vectors inside $\mathbb{C}^{2^{n}}$ for some n
- Such states can be manipulated only using unitary matrices
- Let $U \in \mathbb{C}^{2^{n} \times 2^{n}}$. Then U is unitary if and only if $U U^{\dagger}=I$

Unitaries and Gates

- In the quantum circuit formalism, qubits are manipulated through quantum gates
- Unitary matrices have a 1 to 1 correspondence to quantum gates

Universal Set of Gates

- Only a finite set of gates can be manufactured in real world quantum computers
- The rest of the unitaries must be synthesised in terms of such gates
- A set of gates \mathcal{B} is called universal if it can synthesise any unitary U

Clifford+T

- The most adopted universal set of gates is Clifford+T
- It contains three single-qubit gates and a two-qubit gate

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad S=\left(\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right) \quad T=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \frac{\pi}{4}}
\end{array}\right)
$$

$$
\text { CNOT }=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

- $\operatorname{CNOT}(a, b)=(a, a \oplus b)$ where a is called control and b is the target.

CNOT minimization problem

- Consider a circuit composed only by CNOT and T gates a $\{\mathrm{CNOT}, \mathrm{T}\}$ circuit
- It describes some particular function g that acts on the input qubits
- The problem is to find a circuit with the same action g on the input, with the minimum number of CNOT gates.

Phase Polynomial Representation

Lemma 1

The action of a $\{C N O T, T\}$ circuit on the initial state $\left|x_{1}, x_{2}, \cdots x_{n}\right\rangle$ has the form:

$$
\left|x_{1}, x_{2}, \cdots x_{n}\right\rangle \mapsto e^{i \frac{\pi}{4} p\left(x_{1}, x_{2}, \cdots, x_{n}\right)}\left|g\left(x_{1}, x_{2}, \cdots x_{n}\right)\right\rangle
$$

with $p\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ defined as:

$$
p\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{i=1}^{k}\left(c_{i} \bmod 8\right) f_{i}\left(x_{1}, x_{2}, \cdots x_{n}\right)
$$

where $g: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$ is a linear reversible function and p is a linear combination of linear boolean functions $f_{i}: \mathbb{B}^{n} \rightarrow \mathbb{B}$.

- Each circuit has its phase polynomial representation, uniquely defined by g, f_{i}, c_{i} for $i=1,2, \ldots k$.
- g can be written as a $n \times n$ boolean matrix G
- Each f_{i} can be expressed as a boolean row vector F_{i}

Example

Example 2

Its phase polynomial representation is the following:

$$
G=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \quad F_{1}=\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right) \quad F_{2}=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)
$$

Topological Constraints

- In real world Quantum Computers, qubits are connected to each other according to some topology S
- CNOT gates can be applied only to pairs of qubits that are connected in S
- How do we encode the topology?

It's Graph Time

- We encode S as a graph $\left(V_{S}, E_{S}\right)$
- $V_{S}=1,2, \cdots, n$ is the set of nodes, where n is the number of qubit
$-E_{S}$ is a set of directed edges
- The set E_{S} introduces the following constraint on the set of legal operations:
$\operatorname{CNOT}(i, j)$ can be applied if and only if $(i, j) \in E_{S}$

Example of a Three Qubit Topology

- This examples depict a topology of a three qubit quantum device $S=\left\{V_{S}=\{1,2,3\}, E_{S}=\{(1,2),(2,3)\}\right\}$
- Only $\operatorname{CNOT}(1,2)$ and $\operatorname{CNOT}(2,3)$ are allowed
- Notice that notions like reachability becomes important when introducing this constraint
- If node i cannot reach node j in S, then $\operatorname{CNOT}(i, j)$ is not implementable

Problem Statement

Since the number of T gates in the input circuit is supposed to be optimal, the problem we want to solve is the following:

- INPUT: $G, S, F_{1}, F_{2}, \cdots F_{k}$
- OUTPUT: a sequence of CNOT gates to be applied such that the final behaviour of the circuit is the one described by G.
The constraints we must fulfill are the following:
- We want to apply the minimum number of CNOT gates
- Every CNOT gates must be legal according to S
- For each F_{i} with $i \in\{1,2, \cdots, k\}$, there must exist a moment during the computation in which a row of G is exactly F_{i}.

An Example

Example 3

Let S, G, F_{1} be defined as follows:

$$
G=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \quad F_{1}=\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)
$$

It is Solving Time

We solved the problem through Answer Set Programming. The model we propose is a DAG based one:

- We want to produce a DAG $\mathcal{G}=(V, E)$
- $V=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ where x_{i} will have to match the i-th row of G
- We will see in the next slides how the set E is built
- We want to build the set E of minimum size l
- Each edge in E must comply with the rules introduced by S

Solving with a DAG

\Rightarrow A CNOT with control x_{j} and target x_{i} is represented by a node x_{i} with two incoming edges:
(1) One edge comes from the closer node labelled x_{i}
(2) The other from the closer node labelled x_{j}

Figure 1: Generic DAG node describing $\operatorname{CNOT}\left(x_{j}, x_{i}\right)$.

Why is it a DAG

- The type of node induces a layering of the nodes
- Leafs are at layer 0
- A node at layer j can only have incoming edges from nodes in lower layers
- One layer can contain more than one node

Let j be the current layer, it can contain at most one node labelled x_{i}

- Each internal node is a CNOT gate

Constraints

- After l layers, it must hold that

$$
\operatorname{vAL}_{l}\left(x_{i}\right)=G_{i}, \forall i \in\{1,2, \cdots, n\}
$$

Where

$$
\begin{array}{ll}
\operatorname{VAL}_{0}\left(x_{i}\right)=x_{i} & \forall i \in\{1,2, \cdots, n\} \\
\operatorname{VAL}_{t}\left(x_{i}\right)=\operatorname{VAL}_{t-1}\left(x_{i}\right) & \text { if } \nexists x_{k} \mid\left(x_{k}, x_{i}, t\right) \in E \\
\operatorname{VAL}_{t}\left(x_{i}\right)=\operatorname{VAL}_{t-1}\left(x_{i}\right) \oplus \operatorname{VAL}_{t-1}\left(x_{k}\right) & \text { if } \exists x_{k} \mid\left(x_{k}, x_{i}, t\right) \in E
\end{array}
$$

- Moreover, it must be true that:

$$
\forall F_{i} \exists t \leq l \exists x_{j} \mid \operatorname{vAL}_{t}\left(x_{j}\right)=F_{i}
$$

DAG example

Example 4

Consider the matrix from Example 3. The generated DAG \mathcal{G}, with the minimum number of node is the following:

Encoding in CLINGO

Let $G \in\{0,1\}^{n \times n}$ and $F_{i} \in\{0,1\}^{n}$ for $i=1,2, \cdots k$.

- We used two predicates $\mathrm{G}(i, j, b)$ and $\mathrm{F}(i, j, b)$ to encode G and F respectively
- We ecndoded the graph S with a predicate $\mathrm{S}(i, j)$
- $\operatorname{NODE}(i)$ holds for every $i=1,2, \cdots, n$
- LAYER (i) holds for $i=1,2, \cdots, l$
- XOR_NODE (I, J, L) holds iff at layer L, there is a node labelled x_{I} which is the result of the XOR between x_{I} and x_{J} $-\operatorname{CNOT}\left(x_{j}, x_{i}\right)$
- XOR_NODE (I, J, L) can hold iff $(j, i) \in E_{S}$
- VALUE (Z, I, Y) holds if and only if $x_{Y} \in \operatorname{VAL}_{I}\left(x_{Z}\right)$

Testing Generation

For each $n \in\{4,5,6,7,8\}$:

- we generated 10 different random tests
- For each test:
(1) we created an $n \times n$ boolean matrix- G
(2) we picked a number k between 1 and n-the number of F_{i}
(3) we generated k different n boolean vectors-the set of F_{i}

What about S in the tests

In the tests,we used the following S :

Figure 2: Guadalupe Quantum Computer topology reduced to 8 -qubit.

Testing Algorithm

For each test case $G, S,\left\{F_{i}\right\}$:
(1) we initialized a counter l to 1
(2) we run the model with input $G, S,\left\{F_{i}\right\}, l$ to see if the instance was solvable with l layers
(3) if true, we moved to the next example
(4) if false, we increased l and got back to step 2

Results

n	avg time (seconds)
4	0.023
5	0.702
6	20.212
7	45.548
8	98.721

(a) Results without the topology.

n	avg time (seconds)
4	0.020
5	0.85
6	60.357
7	200.948
8	>500

(b) Results with the topology.

Figure 3: Test results for the model with and without topology.

Conclusions and Future Works

Conclusions:

- We proposed an ASP models to minimize the number of CNOT gates in a $\{\mathrm{CNOT}, \mathrm{T}\}$ circuit
- In doing so, we took into account also the underlying qubit topology
- We run a batch of tests to see the method efficiency.

Future Works:

- We want to optimize the model to make it faster
- We want to investigate also constraint programming approaches
- We think that synthesis problem can be tackled as the sum of small optimization subproblems
[1] Carla Piazza, Riccardo Romanello, and Robert Wille. An asp approach for the synthesis of cnot minimal quantum circuits.
volume 3428, 2023.

